MATRIX ORBITAL ©

EVE2 Module
JPEG Viewer

An EVE2 Module example demonstrating how to display JPEGs.

Application Note

Revision 1.0

Introduction

This application note demonstrates how JPEG images can be loaded and displayed on the EVE2 module.
The Graphics Ram available on the EVE2 Module is used to store four images, which are then
individually displayed on screen. A set of buttons are also included, providing users the ability to cycle
through each individual image.

Connections

For this example, an EVE2 module was connected and powered through an EVE2 USB to SPI Bridge. The
USB Bridge was directly connected to a computer using a mini USB type B cable.

Wall Power Supply

PC

T eve2
Module

CEiE

‘V'O *

USB2SP

| label | Descripion | PartNumber |

EVE2Module /2 Poard takes 5Pl data and sends RGB EVE2-43A-BLM-TPR Module
Information to the display

20 pin FFC Cable with 0.5mm pitch. Allows Wiirth Elektronics 687620050002 or

SPI communication between a host controller and .
similar
EVE2
USB2SPI Convert USB protocol communication to SPI. Matrix Orbital USB2SPI bridge
USI.3 . Mlnl-USB.cabIe to communicate and power EXTMUSB3ET
Communication. smaller displays*
Wall Power Supply 5V wall power supply PWR-ACDC-5V2A

*Note: Smaller displays can be powered using the USB Communication header. For larger displays such as the EVE2-50A and
EVE2-70A, additional power must be supplied via the power jack.

Code

The code used in this example was taken from FTDI’s EVE2
Sample Application, and modified to highlight how images can be
displayed on the EVE2 Module. The code for this example was
written in C and makes use of the libraries provided by FTDI,
including their write and read functions. Modifications are
contained in the SampleApp.c file and all other files remain
untouched. FTDI’s Sample Application code can be found on their
website, www.ftdichip.com.

The code was developed in Microsoft Visual Studio, and can be
compiled and run through the Visual Studio compiler. Microsoft
Visual Studio can be downloaded for free at
https://www.visualstudio.com/vs/community/

Since the code base was taken from one of FTDI’s Sample
applications, and modified for our purposes, we have taken the
liberty to comment certain sections of the code to ensure that
the user understands how the code operates, and how FTDI’s
functions work.

Once running, variables will be initialized, and the EVE2 will be
configured for communication with the TFT. All four images are
then uploaded to the EVE2 Module’s graphics RAM. A calibration
sequence will then be called, and the user will be prompted to
calibrate the display’s touch screen. After calibration, the EVE2

module will draw a gradient, and draw the first bitmap on screen.
Next, a set of buttons will be drawn, as well as a white rectangle to highlight which image is currently
being displayed. The two arrow buttons can be used to cycle through each image, and the four buttons

above can be used to select specific images.

By default, the EVE2 module is configured for a 480 x 272 resolution display in horizontal configuration.

,—’ Viewer Interface
¥

Initialize Variables

L2

Establish
Communication

¥

Boot up. and
configure the
display

v
Load raw images
10 the Graphics
RAM

¥

Calibrate the
touch screen

¥

Draw the JPEG

Update Bitmap 1o
be displayed

Parse for touch
inputs

I\'es

mage Butt
Pressed?

No

Exit button
pressed?

Yes

End Program

No

If a different display resolution is being used, changes may need to be made to the configuration

registers before the display can operate properly.

Once configured, a ‘for’ loop will initiate, uploading four images to the EVE2 Module’s Graphics RAM. In
this loop, a raw image is loaded from the file, given a handle, a source, a layout, and a size. At the end of
the loop, the bitmap address value gets incremented to ensure that the images do not get overwritten

as additional images are uploaded.

https://www.visualstudio.com/vs/community/

// M0: This for loop prepares and loads 4 images into the EVE2's RAM G. It will also provide a bitmap handle for each image.
for (int 1 = @8; 1 < 4; iH){

Ft_App LoadRawFromFile(imageNames[i], bitmapAddress[i]); // M0: Load an image into Graphics RAM
Ft_App WrCoCmd Buffer(phost, BITMAP HANDLE(i + 1)); // M0: Give the image a handle, from 1-4
Ft_App WrCoCmd Buffer(phost, BITMAP SOURCE(bitmapAddress[i])); // M0: Determine the source for the image
Ft_App WrCoCmd Buffer(phost, BITMAP LAYOUT(RGBSGS, 488 * 2, 272)); // M0: Specify the layout of the image
Ft_App WrCoCmd Buffer(phost, BITMAP SIZE(NEAREST, BORDER, BORDER, 48@, 272)); // MO: Determine the size of the image
bitmapAddress[i+1l] = bitmapAddress[i] + (488 * 2 * 272); // M0: Adjust the bitmap address

The raw image ‘for’ loop is followed by a touch screen calibration routine. In this routine, a CALIBRATE
command will be sent to the EVE2 coprocessor, and three dots will be drawn on screen. The touch
screen will be calibrated once all three dots have been pressed.

Once calibrated, two calculations occur to scale the bitmaps and buttons to the screen resolution
specified in the display configuration. After the scaling calculations, a while loop commences.

Within the ‘While’ loop the EVE2 module will begin drawing a gradient background, the first bitmap, and
a white rectangle. One button will be drawn at either side of the bitmap. A ‘for’ loop will draw four
buttons above the current bitmap. The white rectangle is used to highlight one of the four buttons, and
show which bitmap in the list is currently being displayed.

Ft_Gpu_Coled_Dlstart{phost
Ft_pu_CoCed_Gradient(phost.

Place a black-white gradient on screen to use as a b

0: b ghlight splayed

X = ((FL3 - D)3 1 F0: Celculats where o place the whits rectangle bssed on
L LINE TGS © 36));
<t, BEGTU(RECTS))5

255, 255));
(x * 16, (FT_DispHeight / 184) * 16));
((FT_Dispidth * 24) / 168)) = 15), (FT_DispHeignt / 14) * 1));

<l
s

0: Draw an

Ft_pp_WrCoCad_Buffer(phost, i
Ft_Gpu_Coled_Button(ghost, ((FT_Dispuidth * 67) / 168), ((FT_DispHeight * 138) / 144), ((FT_Disphidth * 26) / 160), (FT_DispHeight / 18), 25, @, "Bxit");
tagoption] = tagoption2 = €

/1 M0: Deternine where each button will
x = ((FT_Dispuidth * 25) /
y = (FI_Dispeight [143);
w = ({FT_Dispuidth * 26) / 168);
h = (F_DispHeignt / 14);

placed
FT_Dispuidth * 29) [158));

Ft_tpp_WrCoCnd_Buffer (phost, TAG(t + 3));
sprintF(buttonliumber, "“%d", (t + 1));
Ft_Gpu_CoCnd_Button(phost, x, ¥, w, h, 28, 8, buttonkuaber);

Once the JPEG Viewer user interface is drawn, the EVE2 will continuously parse for touch inputs. If the
// MO: Read touch tag register. If no button was pressed, reset all touch values. user tOUChes one of the buttons |0cated at the Ieft or rlght Of

tagval = Ft_Gpu_Hal_Rd3(phost, REG_TOUCH_TAG);

(e et the bitmap, the current bitmap will be incremented or

sleepDelay = 30; . .

R AT O elatoumter - 0 decremented appropriately. The screen will then be updated
! with the new bitmap. If either button is held down, the EVE
// M0: Wait for button to be pressed . . .
hile ((teguel =) || (tageal == 255))¢ will cycle through the list of bitmaps.

tagval = Ft_Gpu_Hal Rda(phost, REG_TOUCH TAG);
printf(“tagval = %i\n", tagval);
1

// MO: Report which butten was pressed and respond appropriately

printF("tagual = Eiln', togual); If one of the four buttons above the bitmap is pressed, the
current bitmap handle will be changed to a specific value,
and the screen will be updated to the corresponding bitmap.

At any point while the code is running, the user will be able to exit the program by pressing the ‘Exit’
button at the bottom of the screen. When the ‘Exit’ button is pressed, the screen will clear and the
program will close.

Conclusion

This example demonstrates how one can load and display
raw images on the EVE2 Module. In addition, user control
was implemented, allowing for basic user inputs during
operation.

The application note only scratches the surface of what the
EVE2 can be programmed to do. By combining the basic
primitive commands with more advanced commands, users
will be able to unleash the full potential of the EVE2 module.

For more demos and tutorials on the EVE2 module and
EVE2 USB-SPI Bridge, check out our forums at
Icdforums.com

Stay up to date by subscribing to our Youtube channel, https://www.youtube.com/user/MatrixOrbital

Contact
Sales Support Online
Phone: 403.229.2737 Phone: 403.204.3750 Purchasing: www.matrixorbital.com

Email: sales@matrixorbital.ca Email: support@matrixorbital.ca Support: www.matrixorbital.ca

https://www.youtube.com/user/MatrixOrbital
mailto:sales@matrixorbital.ca
mailto:support@matrixorbital.ca
http://www.matrixorbital.ca/

