MATRIX ORBITAL ©

EVE2 Module
Drawing Primitives

An EVE2 Module example demonstrating how to draw primitives

and buttons

Application Note

Revision 1.0

Introduction

This application note demonstrates how basic primitives can be used to draw simple images. In addition,
touch functionality is implemented to demonstrate how easy it can be to integrate an interactive user
interfaces on the EVE2. Using only primitive shapes, the Matrix Orbital Logo could be recreated on any
EVE2 module, and by using the built-in button widget, buttons were added to provide users control.

Connections

For this example, an EVE2 module was connected and powered through an EVE2 USB to SPI Bridge. The
USB Bridge was directly connected to a computer using a mini USB type B cable.

Wall Power Supply

PC

T eve2
Module

CEiE

‘V'O *

USB2SP

| label | Descripion | PartNumber |

EVE2Module /2 Poard takes 5Pl data and sends RGB EVE2-43A-BLM-TPR Module
Information to the display

20 pin FFC Cable with 0.5mm pitch. Allows Wiirth Elektronics 687620050002 or

SPI communication between a host controller and .
similar
EVE2
USB2SPI Convert USB protocol communication to SPI. Matrix Orbital USB2SPI bridge
USI.3 . Mlnl-USB.cabIe to communicate and power EXTMUSB3ET
Communication. smaller displays*
Wall Power Supply 5V wall power supply PWR-ACDC-5V2A

*Note: Smaller displays can be powered using the USB Communication header. For larger displays such as the EVE2-50A and
EVE2-70A, additional power must be supplied via the power jack.

Code

The code used in this example was taken from FTDI’s EVE2 Sample Application, and modified to highlight
how primitive commands are sent to EVE2 Module. The code for this example was written in C and
makes use of the libraries provided by FTDI, including their write and read functions. Modifications are
contained in the SampleApp.c file and all other files remain untouched. FTDI’'s Sample Application code
can be found on their website, www.ftdichip.com.

Start
The code was developed in Microsoft Visual Studio, and can be compiled Initialize variabies
and run through the Visual Studio compiler. Microsoft Visual Studio can 3
be downloaded for free at https://www.visualstudio.com/vs/community/ o Establish
¥

Boot up. configure
and calibrate

Since the code base was taken from one of FTDI’s Sample applications,

and modified for our purposes, we have taken the liberty to comment dis:’:ay
many sections of the code to ensure that the user understands how the ———
code operates, and how FTDI’s functions work. "

Draw Matrix
Once running, variables will be initialized, and the EVE2 will be configured i
for communication with the TFT. A calibration sequence will then be Draw:m .
called, and the user will be prompted to calibrate the display’s touch Az 'Re"'ay:’”"""s

screen. Once calibrated, the EVE2 module will proceed by drawing the
Matrix Orbital logo using the drawing primitives available on the EVE2.
Once the logo is complete, two buttons will appear, providing the option
to redraw the logo, or exit the program

Button Was
pressed

Was ‘Replay’
pressad?

No

Was 'Exit’
pressed?

Yes
End Program

By default, the EVE2 module is configured for a 480 x 272 resolution
display in horizontal configuration. If a different display resolution is being
used, changes may need to be made to the configuration registers before
the display can operate properly.

Once configured, a touch screen calibration routine will be called. In
this routine, a CALIBRATE command will be sent to the EVE2 coprocessor, and three dots will be drawn
on screen. The touch screen will be calibrated once all three dots have been pressed.

Ft_Gpu_CoCmd_Dlstart(phost);

Ft_App_WrCoCmd_Buffer(phost,CLEAR_COLOR_RGB(64,64,64));

Ft_App_WrCoCmd_Buffer(phost,CLEAR(L,1,1));

Ft_App_WrCoCmd_Buffer(phost,COLOR_RGB(255,255,255));

Ft_Gpu_CoCmd_Text(phost, (FT_DispWidth/2), (FT_DispHeight/2), 27, OPT_CENTER, "Please Tap on the dot");
Ft_6pu_CoCmd_Calibrate(phost, @);

Please Tap on the dot

/* Download the commands inte FIFIO */
Ft_App_Flush_Co_Buffer(phost);

/* Wait till coprocessor completes the operation */
Ft_Gpu_Hal_WaitCmdfifo_empty(phost);

After calibration, the EVE2 will immediately run a loop, drawing primitives, recreating the Matrix Orbital
logo, and generating two buttons. Each step will draw a different primitive, and the loop will continue
drawing individual primitives until the logo is complete, and the two control buttons are drawn. The
primitives demonstrated in the loop include rectangles, points, and text to draw the logo, scissors to
crop the logo, and buttons for input.

https://www.visualstudio.com/vs/community/

-
r 1

Matrix ®
Orbital

for (1‘ =@; 1 ¢<6; im)]
teration, draw a white rectangle in the center of the screen as the background of the logo

/ M0: First
Ft_6pu_CoCnd_DLstart(phost);
Ft_App_WrCoCnd_Buffer(phost, CLEAR(L, 1, 1));

Ft_App_irCoCnd_Buffer
Ft_App_WrCoCnd_Buffer
Ft_App_WrCoCnd_Buffer
Ft_App_WrCoCnd_Buffer
= 0){

phost, CO
phost,
phost,
phost,

REB(255, 255, 255));
5))s
F(((FT_bispiidth / 2) - 160)

i

(FT_Dispiidth / 2) + 108) * 16

* 16, ((FT_Dispheight / 2) - 161) * 16)
. ((FT_DispHeight / 2) +4) * 16));

printf(*Draning Rectangletn®); // MO: Print text to the console window

M0: Sixth iteration, limit the area that can be drawn on.

This will crop the image to ensure the logo is rectangular when conpleted

i (1= 5){

Ft_App_WrCoCnd_Buffer(phost, SCISSOR XY(((FT Dispiidth / 2) - 100),

((FT_Dispheight / 2) - 121))

Ft_App_WrCoCnd_Buffer(phost, SCISSOR SIZE(((FT Dispiidth / 2) - 40), ((FT DispHeight / 2) - 31)));/

i (1 == 5){

printf("Clipping the image\n");// MO: Print text to the console window

/ M0: Second iteration, draw a yellow Circle
if (1= 1)]

Ft_App_WrCoCnd_Buffer(phost, COLOR_RGB(250, 250, 8));
Ft_App_WrCoCnd_Buffer(phost, POINT SIZE(100 * 16));
(
(

Ft_App_WrCoCnd_Buffer POINTS)) ;
Ftapp WrCoCnd_Buffer phust

if (1= 1){
printf(“B'auing vellon

F((FT_Dispidth / 2) * 16, ((FT_DispHeight / 2) + 24) * 16));

/ M0: Third iteration, Overlap a white circle over the yellow circle to form a half moon

if (i = 2){

Ft_App_HrCoCnd_Buffer(phost, COLOR_RGB(255, 255, 255));
Ft_App_WrCoCnd_Buffer(phost, POINT SIZE(135 * 16));
(
(

Ft_App_WirCoCnd_Buffer(phost, BEGIN(FTPOINTS));
Ft_App_WrCoCnd_Buffer(phost, 2F

i (1= 2)

((FT_Dispuidth / 2) - 27) * 16,

egin drawing a Circle Prinit

printf("Drawing White Circle\n");// MO: Print text to the console window

i

((FT_Dispeight / 2) + 54) * 16));//

/ MO: Start a new Display

List
/ 10: Clear the current screen to black. bhenever a neh‘display 1
it s recommended that the screen ds cleare

g color to white

g a Rectangle Primitive

. the coordinates for the Top Left corner of the rect
/ 10: Specify the coordinates for the Botton Right corner of the

10: Set the X and Y coordinates of the rectangle clip
/ M0: Set the Height and width of the rectangle clip

Set the drawing color to yellow
Set the radius of the circle that will be drawn
Begin drawing a Circle Prini
Set the X and Y coerdinates foi

the centre of the circle

M0: Set the X and Y coordinates for the centre of the circle

Once the logo is complete, a while loop will begin. The while loop will continuously run, reading for
input from the user. If the “Replay” button is pressed, the EVE2 will redraw the logo. If the “Exit” button
is pressed, the program will exit the loop and the display will be cleared.

Matrix
Orbital

{
}

printf("Tag value &

There were issues with the E

s0 we are ignoring TAG 255 as well*/
tagvalue = Ft_Gpu_Hal Rd3(phost, R
printf("Waiting for input ");
while (tagValue == @ || tagValue == 255)

| TOUCH_TAG);// M0:

* M0: Continuously read for touch mput. @ represents no touch detected.
reporting a 255 touch when the Matrix Orbital Logo was pressed

: Read for any new touch tag inputs

// M0: Print text to the consele window

tagValue = Ft_Gpu_Hal Rd8(phost, REG_TOUCH TAG); // MO:

Read for any new touch tag inputs

\n", tagvalue); // M0: Print text to the console window

Conclusion

This example demonstrates how one can use the drawing
primitives to design simple images and assets. In addition,
simple user control was implemented, allowing for basic user
inputs during operation.

The application note only scratches the surface of what the
EVE2 can be programmed to do. By combining the basic
primitive commands with more advanced commands, users

will be able to unleash the full potential of the EVE2 module.

For more demos and tutorials on the EVE2 module and
EVE2 USB-SPI Bridge, check out our forums at
Icdforums.com

Stay up to date by subscribing to our Youtube channel, https://www.youtube.com/user/MatrixOrbital

Contact

Phone: 403.229.2737 Phone: 403.204.3750 Purchasing: www.matrixorbital.com
Email: sales@matrixorbital.ca Email: support@matrixorbital.ca Support: www.matrixorbital.ca

https://www.youtube.com/user/MatrixOrbital
mailto:sales@matrixorbital.ca
mailto:support@matrixorbital.ca
http://www.matrixorbital.ca/

